Mast cell-independent impairment of host defense and muscle contraction in T. spiralis-infected W/W(V) mice.
نویسندگان
چکیده
In response to nematode infection, the host presumably attempts to create an unfavorable environment to prevent larval penetration of the host and to expedite parasite expulsion from the gut. In this study, we have used W/W(V) mice with or without mast cells after bone marrow reconstitution (BMR-W/W(V)) to examine the role of mast cells in the host response. W/W(V), BMR-W/W(V), and wild-type (+/+) mice were infected with Trichinella spiralis. Infected W/W(V) mice exhibited less tissue damage and experienced a delay in worm expulsion and a greater degree of larval penetration of the gut leading to encystment in skeletal muscle. Tissue injury was greater and worm expulsion was normalized in BMR-W/W(V) mice, but larval penetration remained unchanged. Spontaneous contractile activity of jejunal muscle was disrupted in W/W(V) mice, as was the contractile response to carbachol. These abnormalities were also present in BMR-W/W(V) mice. These results indicate that mast cells mediate tissue damage and contribute to the timely expulsion of nematodes from the gut during primary infection.
منابع مشابه
Modulation of intestinal muscle contraction by interleukin-9 (IL-9) or IL-9 neutralization: correlation with worm expulsion in murine nematode infections.
Immune responses associated with intestinal nematode infections are characterized by the activation of T-helper 2 (Th2) cells. Previous studies demonstrated that during Trichinella spiralis infection, Th2 cells contribute to the development of intestinal muscle hypercontractility and to worm eviction from the gut, in part through signal transducer and activator of transcription factor 6 (Stat6)...
متن کاملDisruption of CD40-CD40 ligand pathway inhibits the development of intestinal muscle hypercontractility and protective immunity in nematode infection.
In our previous studies, we demonstrated that during Trichinella spiralis infection, T helper (Th) 2 cells contribute to the development of intestinal muscle hypercontractility and worm expulsion from the gut via STAT6. In addition, we have linked the altered muscle contractility to the eviction of the parasite and thereby to the host defense. However, the initial events linking infection to th...
متن کاملDelayed expulsion of adult Trichinella spiralis by mast cell-deficient W/Wv mice.
Mast cell-deficient W/Wv mice and their mast cell-sufficient littermates were given infections of Trichinella spiralis. W/Wv mice were slower than their littermates to expel adult T. spiralis. Repair of the mast cell deficiency of W/Wv mice by bone marrow grafting was accompanied by accelerated expulsion of T. spiralis.
متن کاملCritical role for signal transducer and activator of transcription factor 6 in mediating intestinal muscle hypercontractility and worm expulsion in Trichinella spiralis-infected mice.
Intestinal nematode infections in rats or mice are accompanied by intestinal muscle hyper contractility that may contribute to parasite expulsion from the gut. Previous studies demonstrated that both the expulsion of nematode parasites and the associated muscle hyper contractility are dependent on CD4(+) T helper cells. Nevertheless, the precise immunological mechanism underlying changes in int...
متن کاملStat6 signaling promotes protective immunity against Trichinella spiralis through a mast cell- and T cell-dependent mechanism.
Studies in mice infected with the gastrointestinal nematode parasite Nippostrongylus brasiliensis demonstrated that IL-4/IL-13 activation of Stat6 suppresses development of intestinal mastocytosis and does not contribute to IL-4/IL-13 production, but is still essential for parasite expulsion. Because expulsion of another gastrointestinal nematode, Trichinella spiralis, unlike N. brasiliensis ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 280 4 شماره
صفحات -
تاریخ انتشار 2001